EXERCICES SUR LA PROPORTIONNALITE*** CORRECTION

EXERCICES DE BREVET

Exercice 1 (Centres étrangers juin 2014)

1) Le trajet sur autoroute dure 8h31, soit :

Calcul de la vitesse moyenne :

Cet itinéraire prévoit une vitesse moyenne d'environ 117 km/h pour la portion de trajet sur autoroute.

2) Julien doit faire des pauses d'au moins 10 minutes toutes les 2 heures de conduite. Etant donné qu'il doit conduire pendant 8h 47min, il devra faire une pause au bout de la deuxième heure, de la quatrième heure, de la sixième heure et enfin de la huitième heure, soit 4 pauses. Il mettra donc au minimum :
8h 47min + 4 × 10min = 8h 47min + 40min = 9h 27min
Julien mettra au moins 9 heures et 27 minutes.

3) Un plein d'essence coûte :
1.42 × 60 = 85€20
Or il va en avoir pour 89€84 de carburant d'après le site internet.  Par conséquent, Julien ne pourra pas faire le trajet avec un seul plein d'essence.
Autre raisonnement possible :
Sachant qu'un litre coûte 1€42 et que le site indique que Julien va en avoir pour 89€84 de carburant, sa consommation va être de :

Il va consommer environ 63.27 litres alors que son réservoir ne fait que 60 litres. Par conséquent, Julien ne peut pas faire le trajet avec un seul plein.

Exercice 2 (Métropole-Antilles-Guyane juin 2014)

1) L'énoncé précise que les cahiers ont le même prix avant promotion. Si Léa achète un seul cahier, elle ne peut pas bénéficier de la promotion dans le magasin A (qui nécessite l'achat de 3 cahiers) ni celle du magasin B (qui nécessite l'achat de 2 cahiers). Seule la prmotion du magasin C s'applique pour l'achat d'un unique cahier. Par conséquent, le magasin C est le plus intéressant pour l'achat d'un cahier.

2) Soit le prix d'un cahier.
a) Si elle achète deux cahiers :
- dans le magasin A, elle ne peut pas bénéficier de la promotion. Elle paiera donc le plein tarif, à savoir p = 2.
- dans le magasin B, elle paie le premier cahier € et le deuxième à moitié prix (0.5), soit : p = + 0.5 = 1.5
- dans le magasin C, chaque cahier a une réduction de 30% et coûte donc 0.7. Pour deux cahiers : p = 0.7 × 2 = 1.4
Comme elle veut payer le plus petit prix, elle choisira la formule la moins chère, c'est-à-dire celle du magasin C (1.4).

b) Si elle achète trois cahiers :
- dans le magasin A, elle ne paie le prix que de deux cahiers d'après la promotion : p = 2.
- dans le magasin B, elle paie le premier plein tarif, le deuxième à moitié et le troisième plein tarif, soit : p = 2.5.
- dans le magasin C, elle paie chaque cahier 0.7 donc pour trois cahiers : p = 0.7 × 3 = 2.1
Comme elle veut payer le plus petit prix, elle choisira la formule la moins chère, c'est-à-dire celle du magasin A (2).

3) Le prix du cahier, qui subit une réduction de 30% puis une nouvelle réduction de 10% sera égal à :

Le nouveau prix est de 0.63. Par conséquent, le montant de la réduction est de :
- 0.63 = 0.37
La réduction a été de 37%.

Exercice 3 (Asie juin 2014)

Calcul de la longueur du trottoir roulant
Le triangle PHC est rectangle en H donc d'après le théorème de Pythagore :
PC2 = PH2 + HC2
PC2 = 252 + 42
PC2 = 625 + 16
PC2 = 641

Le trottoir roulant mesure environ 25.32 mètres.
Le modèle 1 a une vitesse maximale de 0.5 m/s. Par conséquent, pour parcourir 25.32 mètres, il mettra :

Le modèle 1 met 50.64 secondes pour transporter les personnes jusqu'au centre commercial, ce qui est en-dessous d'une minute.
Le modèle 2 a une vitesse maximale de 0.75 m/s. Par conséquent, pour parcourir 25.32 mètres, il mettra :

Le modèle 2 met 33.76 secondes pour transporter les personnes jusqu'au centre commercial, ce qui est en-dessous d'une minute.
Les deux modèles conviennent sur le plan de la vitesse.
Il est par contre précisé qu'il existe un angle d'inclinaison maximal avec l'horizontale.
Calcul de l'angle d'inclinaison du trottoir

L'angle d'inclinaison du trottoir roulant est de 9°09. Or le modèle n°2 ne supporte pas plus de 6°.
Par conséquent, le centre commercial choisira le modèle 1.


Exercice 4 (Nouvelle Calédonie décembre 2014)

1) En 40 secondes, la distance parcourue est égale à la longueur du bateau, soit 246 mètres.

2) Ce bateau parcourt 246 mètres en 40 secondes, donc en une seconde, il parcourt :

Sa vitesse est de 6.15 mètres par seconde.
A partir d'un tableau de proportionnalité, on peut déterminer sa vitesse en noeuds. Soit cette vitesse :
Vitesse (m/s) Vitesse (noeuds)
0.5 1
6.15

Vitesse du bateau (en noeuds) :

La vitesse du bateau est de 12.3 noeuds. Par conséquent, Eva est la plus proche du bon résultat avec 10 noeuds.

Exercice 5 (Pondichéry avril 2013)

1) Durée du vol en heures :
255 × 24 = 6120 h
Le vol a duré 6120 heures.

2) Calcul de la vitesse moyenne :

La vitesse moyenne est approximativement égale à 91500 km/h.

3) Temps mis par les images pour arriver sur la Terre :

Les images ont mis environ 827 secondes pour arriver sur la Terre.
827 s = 13 × 60s + 47s = 13min 47s
Si les images ont été émises de Mars à 7h 48min, elles arrivent sur Terre à :
7h 48min + 13min 47s = 8h 01min 47s
Les images arriveront approximativement vers 8h02 sur la Terre.

Exercice 6 (Polynésie juin 2013)

1) Superficie de la poubelle géante :
550 000 × 6 = 3 300 000
La poubelle géante a une superficie de 3.3 millions de km2.

2) Dans un an, sa superficie sera égale à (en millions de  km2) :

La superficie dans un an sera égale à 3 630 000 km2.

3) En appliquant 4 augmentations successives de 11%, la superficie de la poubelle géante aura atteint (en millions de km2) :

La superficie de la poubelle géante sera de 4.83 millions de km2 dans 4 ans.
Par rapport au niveau initial de 3.3 millions de km2, l'augmentation en pourcentage a été de :

L'augmentation aura été de 46.41%. Par conséquent, on ne peut pas dire qu'en 4 ans, la superficie a doublé (l'augmentation aurait été de 100% dans ce cas).

Exercice 7 (Asie juin 2013)

1) Nombre supplémentaire de cyberacheteurs au premier trimestre 2012 :

Il y a approximativement 3.1 millions de cyberacheteurs en plus au premier trimestre 2012. Leur nombre est donc égal à :
28 + 3.1 = 31.1
Environ 31.1 millions d'internautes ont acheté en ligne au premier trimestre 2012.
 
2) En appliquant deux augmentations successives de 11%, le nombre total de cyberacheteurs sera égal à :

34.4988 millions d'internautes auront effectué un achat en ligne.
Par rapport au niveau initial de 28 millions, l'augmentation en pourcentage a été de :

Deux augmentations successives de 11% équivalent à une augmentation de 23.21%.
Correction des exercices de brevet sur la proportionnalité
© Planète Maths