EXERCICES SUR LA PROPORTIONNALITE* CORRECTION

EXERCICES D'ENTRAINEMENT

Exercice 1

Quantité (en kg) 1 3 8
Prix (en €) 2.50 7.50 20

On constate que pour passer de la première ligne à la seconde, on multiplie tous les élements par 2.5. Par conséquent, ce tableau est un tableau de proportionnalité et le coefficient de proportionnalité est égal à 2.5.

Quantité (en kg) 5 10 20
Prix (en €) 30 50 80

On constate que pour passer de la première ligne à la seconde, on multiplie le premier élément par 6, puis le second par 5, et enfin le dernier par 4. Comme le multiplicateur n'est pas le même pour chaque élément, ce tableau n'est pas un tableau de proportionnalité.

Exercice 2

20 25 30
50 55 60

On remarque que pour passer de la première ligne à la seconde, on multiplie le premier élément par 2.5, puis le second par 2.2, et enfin le dernier par 2. Comme le multiplicateur n'est pas le même pour chaque élément, ce tableau n'est pas un tableau de proportionnalité.

50 100
200 400

On remarque que pour passer de la première ligne à la seconde, on multiplie le premier élément par 4 et le deuxième par 4. Comme on multiplie tous les éléments par un même nombre (4), alors ce tableau est un tableau de proportionnalité et le coefficient de proportionnalité est égal à 4.

7 9 15 18 27 350
0.07 0.09 0.15 0.18 0.27 3.5

On remarque que pour passer de la première ligne à la seconde, on multiplie tous les éléments par 0.01 (ce qui revient à les diviser par 100) donc ce tableau est un tableau de proportionnalité dont le coefficient de proportionnalité est 0.01.

Exercice 3

Les charges sont proportionnelles à la superficie, donc on peut déterminer le coefficient de proportionnalité en divisant le premier élément de la seconde ligne par le premier élément de la première ligne :

Le coefficient de proportionnalité est égal à 1.5, donc :
- pour passer de la première ligne à la seconde on multiplie les éléments par 1.5.
- pour passer de la deuxième ligne à la première on divise les éléments par 1.5.
Ce qui nous donne :

Superficie (en m2) 20 42
58 39 103
Charges (en €) 30 63 87 58.50 154.50


Exercice 4

1) Le prix est proportionnel à la longueur de la corde :

Nombre de mètres de corde 3 15
Prix (en €) 5
 Calcul de :

15 mètres de corde coûtent 25€.

2) Le prix étant toujours proportionnel à la longueur de la corde :

Nombre de mètres de corde 3
Prix (en €) 5 200
Calcul de :

Avec 200€, je peux acheter 120 mètres de corde.

Exercice 5

1) Lorsqu'on dit qu'une carte est à l'échelle 1/100 000, cela signifie que 1 cm sur la carte représente 100 000 cm dans la réalité.
La distance sur la carte est donc proportionnelle à la distance réelle :

Distance sur la carte (cm) 1 6
Distance réelle (cm) 100 000

Soit la distance réelle entre ces deux villes.
Calcul de :

La distance entre ces deux villes est de 600 000 cm. Convertissons cette grandeur en km :
600 000 cm = 6 000 m = 6 km
Ces deux villes sont séparées de 6 km.

2) Transformons 15 km en cm :
15 km = 15 000 m = 1 500 000 cm

Distance sur la carte (cm) 1
Distance réelle (cm) 100 000 1 500 000

Calcul de :

La distance sur la carte entre ces deux villes est de 15 cm.

Exercice 6

Calcul du montant de l'augmentation :

L'augmentation a été de 13€50.
Le prix du loyer moyen payé en 2015 est égal à :
450 + 13.50 = 463.50
Les Bordelais payent en moyenne 463€50 de loyer mensuel pour un T1.

Exercice 7

Taux de remplissage :

Le taux de remplissage est approximativement égal à 91.18%.

Exercice 8

Si 180 sondés déclarent ne jamais utiliser les transports en commun, cela signifie que 1200 - 180 = 1020 personnes disent les utiliser.  Le pourcentage de ceux qui disent utiliser les transports est égal à :

85% des Parisiens disent utiliser les transports en commun.

Exercice 9

Calcul du montant de la baisse :

Le prix moyen a baissé de 18€80 entre 2014 et 2015. Par conséquent, le prix moyen en 2015 est égal à :
188 - 18.80 = 169.20
Une paire de lunettes coûte en moyenne 169€20 en 2015.

Exercice 10

1)Transformons les vitesses en km/h :
20 m/s = 20 × 3600 m/h = 72000 m/h = 72 km/h
14 m/s = 14 × 3600 m/h = 50400 m/h = 50.4 km/h
200 m/s = 200 × 3600 m/h = 720000 m/h = 720 km/h

2) Transformons les vitesses en m/s :
90 km/h = 90000 m/h = 90000 m/3600 s = 25 m/s
5 km/h = 5000 m/h = 5000 m/3600 s ≈ 1.39 m/s
1200 km/h = 1200000 m/h = 1200000 m/3600 s ≈ 333.33 m/s
Correction des exercices d'entrainement sur la proportionnalité
© Planète Maths